Automatic annotation of protein function based on family identification.

نویسندگان

  • Federico Abascal
  • Alfonso Valencia
چکیده

Although genomes are being sequenced at an impressive rate, the information generated tells us little about protein function, which is slow to characterize by traditional methods. Automatic protein function annotation based on computational methods has alleviated this imbalance. The most powerful current approach for inferring the function of new proteins is by studying the annotations of their homologues, since their common origin is assumed to be reflected in their structure and function. Unfortunately, as proteins evolve they acquire new functions, so annotation based on homology must be carried out in the context of orthologues or subfamilies. Evolution adds new complications through domain shuffling: homology (or orthology) frequently corresponds to domains rather than complete proteins. Moreover, the function of a protein may be seen as the result of combining the functions of its domains. Additionally, automatic annotation has to deal with problems related to the annotations in the databases: errors (which are likely to be propagated), inconsistencies, or different degrees of function specification. We describe a method that addresses these difficulties for the annotation of protein function. Sequence relationships are detected and measured to obtain a map of the sequence space, which is searched for differentiated groups of proteins (similar to islands on the map), which are expected to have a common function and correspond to groups of orthologues or subfamilies. This mapmaking is done by applying a clustering algorithm based on Normalized cuts in graphs. The domain problem is addressed in a simple way: pairwise local alignments are analyzed to determine the extent to which they cover the entire sequence lengths of the two proteins. This analysis determines both what homologues are preferred for functional inheritance and the level of confidence of the annotation. To alleviate the problems associated with database annotations, the information on all the homologues that are grouped together with the query protein are taken into account to select the most representative functional descriptors. This method has been applied for the annotation of the genome of Buchnera aphidicola (specific host Baizongia pistaciae). Human inspection of the annotations allowed an estimation of accuracy of 94%; the different kinds of error that may appear when using this approach are described. Results can be accessed at http://www.pdg.cnb.uam.es/funcut.html. The programs are available upon request, although installation in other systems may be complicated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Protein Family Databases for Automated Protein Domain Identification

Automatic identification and annotation of protein domains is a major challenge for genome sequencing projects. Simple transfer of the annotation from the overall most similar protein with a known function is relatively reliable for prokaryotic proteins, but often produces misleading and incomplete results for multi-domain proteins, which are common in higher organisms. An alternative approach ...

متن کامل

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

Automatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites

Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 2003